Multiplicative Complexity of XOR Based Regular Functions

نویسندگان

چکیده

XOR-AND Graphs (XAGs) are an enrichment of the classical AND-Inverter (AIGs) with XOR nodes. In particular, XAGs networks composed by ANDs, XORs, and inverters. Besides several emerging technologies applications, often exploited in cryptography-related applications based on multiplicative complexity a Boolean function. The function is minimum number AND gates (i.e., multiplications) that sufficient to represent over basis {AND, XOR, NOT}. fact, minimization important for high-level cryptography protocols such as secure multiparty computation, where processing more expensive than gates. Moreover, it indicator degree vulnerability circuit, small corresponds high algebraic attacks. this paper we study functions characterized two particular regularities, called autosymmetry D-reducibility. exploit these regularities decreasing nodes XAGs. experimental results validate proposed approaches.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the communication complexity of XOR functions

An XOR function is a function of the form g(x, y) = f(x ⊕ y), for some boolean function f on n bits. We study the quantum and classical communication complexity of XOR functions. In the case of exact protocols, we completely characterise one-way communication complexity for all f . We also show that, when f is monotone, g’s quantum and classical complexities are quadratically related, and that ...

متن کامل

Complexity of Regular Functions

We give complexity bounds for various classes of functions computed by cost register automata.

متن کامل

Concrete Multiplicative Complexity of Symmetric Functions

The multiplicative complexity of a Boolean function f is defined as the minimum number of binary conjunction (AND) gates required to construct a circuit representing f , when only exclusive-or, conjunction and negation gates may be used. This article explores in detail the multiplicative complexity of symmetric Boolean functions. New techniques that allow such exploration are introduced. They a...

متن کامل

Multiplicative complexity of vector valued Boolean functions

We consider the multiplicative complexity of Boolean functions with multiple bits of output, studying how large a multiplicative complexity is necessary and sufficient to provide a desired nonlinearity. For so-called ΣΠΣ circuits, we show that there is a tight connection between error correcting codes and circuits computing functions with high nonlinearity. Combining this with known coding theo...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Computers

سال: 2022

ISSN: ['1557-9956', '2326-3814', '0018-9340']

DOI: https://doi.org/10.1109/tc.2022.3141249